Improved User News Feed
Customization for an Open
Source Search Engine
Timothy Chow

Agenda

- Introduction

- Background of Yioop
- Yioop Indexing

- Index Storage

- Reverse lteration

- Testing

- Conclusion

Introduction

- In the past, one of the big problems was distribution of stories
- Newspapers were local, region locked
- Now the Internet allows for stories online

- This allows for two benefits

- Distribution is no longer dependent on area or supplier
- Cost to user is generally free

- 61% of Americans get their news online from the Internet on a typical
day.
- New problem rises:

- Now that users can freely choose stories from anywhere online, how to pick which
ones

Content Aggregation

- Content is posted on several different pages
- Instead of human visiting all sites, have machine or system
- System will have to crawl and save all the items

- Collected results are presented at the end to the user
- Results still need to be ranked or sorted in some meaningful way

- One of earliest examples is Yahoo! News in 1996
- Web syndication

Aggregation Methods

Typically, website content stored in HTML format

Data stored using tags and attributes
- Good for layout and design, not so much for sharing

Web feed formats created to solve this
- XML, YAML, JSON, RSS

Aggregation based on pull strategy
- Feed document contains text and metadata

- List of feeds provided to aggregator
- Aggregator pulls from each feed and stores it

News Ranking

- After items are stored, they need to presented to user in the
best way

- Search engines use a scoring system based on relevancy on
query terms
- Calculated using frequency of search terms matching inside a document
- News feeds ranking prioritizes age of document, or freshness
- Other major factors could include clustered weight and source authority

- More intricate systems will determine temporal freshness

- More obscure features such as story coverage or query frequency within a
given time slot

Existing News Aggregators

- Google News

- Stories are ranked in order of perceived interest
- Similar stories based on subject are clustered
- Specified to each user

- Facebook News

- Stories focused on groups or friends on Facebook
- Four steps: inventory, signals, predictions, and scoring
- Also user specific

- RSS feed aggregators

- Mixes different feeds provided by user, but nothing more
- Similar to Yioop

Trending Words

- Feature in Yioop used to keep track of the top “trending words”

- Word and their occurrences are saved during a news feed update
- Word count is used to calculate some statistics

- Could be used for clustering or search engine optimization(SEQ)

Trending Words

Trending... News -

Top Hourly Top Daily Top Weekly Top Monthly Yearly

[Term [[Score]| [Term [|Score]| ([Term [[Score]| (Term [[Score]| [Term [|Score]
Congressional |, o, || [COVID-19 [2465]| [COvVID-19 [2465]| [COvVID-19 [3465]| ([COvID-19 [24.65|
Black Caucus [stay-athome |1487| [stay-athome |14.87| [stay-athome |[14.87| [stay-athome |[1487]
shelter-in-place [[3.00 || [5onald Trump [[12.95|| [[Donald Trump |[12.95| |[Donald Trump [[12.95] ([Donald Trump |12.95
Executive Order |[3.00 | Supreme Court (10 48| (Supreme Court |10.48| |Supreme Court |[10 48| ||Supreme Court [[1048
COVID-19 1235 || |[Covid-19 [10.10] [[Covid-19 [10.10] ([Covid-19 [10.10] [[Cavid-19 [10.10]
[Donald Trump _ [2.25 | Ishelter-in-place [|9.00 || |(shelter-in-place [{9.00 || (lshelter-in-place [9.00 || |[shelter-in-place {|9.00 |
lin-person 11.50 | lcrude oil [18.00 || |lcrude oil 18.00 || |lcrude oil 18.00 || [lcrude oil 18.00 |
|Small Business |[1.50 | lfutures contract [[7.39 || [[futures contract [7.39 || |[futures contract [[7.39 || |[futures contract |[7.39 |
E:rialnthmQ 152 Prime Minister (|7.36 Prime Minister |7.36 Prime Minister ||7.36 Prime Minister |7.36
ealth Care A - - - :

lvideo-streaming [[1.00 | &sﬂtev = — &tay&t e &taYA o &rlnz_tayit o

Yioop

- Open source search engine written in PHP

- Designed for crawling the web, archiving, and letting users search

- Index is created using visited sites

- Can be manually set up on personal PC

- Unlike Google, crawl sites can be specified by user, as well as the
depth of crawls

Yioop Indexing

- Distributed setup consisting of name servers and queue servers

- Name servers act as nodes, help coordinate crawls

- Each node can have several queue server processes, either to
schedule jobs or to index

- Additional fetcher processes that help with downloading and
processing pages from crawl

- News feed update job is separate from regular crawling, but similar
methodology

Crawling

- Initially set up the list of sites to crawl

- Fetcher processes create a schedule that holds data to be processed
later, as well as type of processing required

- Queue server is periodically pinged for list of pages to download
before creating a summary

- The summary is a shortened description of the page along with
different metadata for indexing

- Unique hash id is assigned to each page and index construction
started

Indexing

- In books: an alphabetical list of names, subjects, etc., with references
to the places where they occur

- In databases: a copy of a subset of columns which are used to speed
up access times

- Overall, two major benefits
- Index will be smaller in file size than document
- Lookup on index is faster

- InYioop, scores for page ranking are also calculated during indexing
before POSTing to queue server
- Queue server merges everything into a final inverted index structure

Inverted Index

- Consider a collection of documents
- What if | want to return every document that contains a certain term

- Create an index from document->term, known as forward index

- e.g. doc1 contains term1, term2, term3, term4
doc2 contains term3, term6
doc3 contains term1, term9, term10

- Using forward index, create a new index which goes from
term->document

- This is the inverted index
- e.g. term1isin doc1, doc3
term2 is in doc1
term3 is in doc1, doc2

Newsfeed Indexing

- MediaUpdater process handles media jobs
Mail server, recommendations, trending, feed update
- News feeds are done by FeedsUpdateJob

- MediaUpdater only runs once per hour, whereas standard crawling is
nonstop

- Usual queue server is also designed to crawl with depth in mind, but
media jobs only work with a source, e.g. depth of 1

Newsfeed setup

- Media sources can be one of four

types
- RSS, JSON, HTML Regex, or
podcast

- Each feed needs correct
parameters to function properly

- Assumes sources will be updated
with new items over time

v ¢ . Admin [Search Sources]

Media Sources | | Subsearches|

Media Sources [

Row 0 to 6 of 6 Show 50 +| Q

Name

Action

National Weather Service 4

Type: Regex Feed

lLanguage: en-US

ICategory: weather

URL:
http://forecast.weather.gov/product.php?

site=Ns&i
Channel:
/WEA\S+LO\/HI\s*\n+([~<]+)\n+NATIONAL/mi
Item Separator:

/\n/

Title:

/2 42)\s\s\s+/

IDescription:

/\s\s\s+(.+2)$/

Link:

http://wwi.weather.gov/

Image XPath:

on=13gl

=3

Delete

Reddit World News

Type: RSS

Language: en-US

ICategory: news

URL:
https://wiw.reddit.com/r/worldnews/.rss
Image XPath:

Delete

Ted

Type: Feed Podcast
lLanguage: en-US
[Expires: One Month

https://pa.tedcdn.com/feeds/talks.rss
/Alternative Link Tag:

enclosure

Wiki Destination:

PublicBPodcast Examples/Ted/%Y-%m-%d %F

Delete

Current Bottleneck

- Prior to this project, crawled news items are stored in intermediary
database

- Items are then added to a singular IndexShard

- Entire IndexShard needs to be rebuilt for each update

- Database storage performance is influenced by amount of RAM that
system has

- Items that are too old have to be removed

- We will explore how index storage works in Yioop and how to change
this current implementation

IndexShards

- Lowest level data structure for a index
- Two access modes, read-only and loaded-in-memory

- While in memory, data can also be packed or unpacked
- New data can only be added while unpacked
- Only packed data can be serialized to disk

- Each shard has three major components

- doc_infos
- word _docs
- words

IndexShard components

- doc _infos - document ids, summary offset, and the total number of

words that were found in that document
- Each record starts with 4 byte offset, followed by 3 bytes to hold doc length, 1 byte
to hold number_doc key strings, and the key strings themselves
- Each key string is 8 bytes containing hash of URL plus a hashed summary

- word_docs - string of sequence of postings

- One posting is a positional offset into a document for where it appears
- Also contains occurrences of word for that document
- Only set while IndexShard is loaded and packed

IndexShard components (cont.)

- words - array of word entries stored in shard

- Exists in two different forms depending on packed or unpacked state

- In packed state, each word entry is made up of:
- Termid
- Generation number
- Offset into word_docs where posting list is stored
- Length of posting list

- In unpacked state, each entry is only a string representation of term plus its

postings
- When serialized to disk, a shard produces a header with doc statistics

and index into words component

Adding to a shard

Indexing mostly uses the addDocumentWords() method

Run after processing a singular page

Takes in the document keys and word lists as arguments

Keys can include hashed id and host url of a link

Word lists is associative array of terms to positions with a document

Terms are hashed and positions are converted to a concatenated
string before being added to words component

Additional parameters such as meta words, description scores, and
user rank is added

IndexArchiveBundle

- IndexShards technically have no size limit, but reading a shard into
memory is difficult if too big

- Size of IndexShard is determined by how much memory the system
has

- To get around this, have multiple generations of IndexShard

- When one shard is full, save to disk and start new generation

- IndexArchiveBundle is a the data structure that holds this together

IndexArchiveBundle structure

File to keep
track of

IndexShardBundle — active shard
ndex

dictionary posting_doc_shards summaries

index1

index2
Description
file for
. oot . , _— bundle
256 folders corresponding to Collection of Collection of gzipped
first letter of hash. Each folder IndexShard files archives with document
contains a dictionary file with saved to disk summarics

document postings

Index storage process

- After crawling some pages, we have generated an IndexShard
- First, check if the most recent shard in bundle has enough space to

store the new shard

If there is, then merge shards
If not, then save active shard and start new generation

- At this point, summaries have already been stored in web archive, so
summary offsets are added into the IndexShard

- Once everything has been added, IndexShard is successfully added
to bundle

- Current news feed storage does not use IndexArchiveBundle

Reverse lteration

- Because news items added at the end of a shard, we want to be able

to move backwards through shards and bundle
- Could have also done backwards construction where items are added

at front of shard

- We need a few new things to make this work:

- New methods to facilitate reverse traversal
- Some way to designate a bundle’s direction
- Modification of existing news feed update job to support IndexArchiveBundles

One Slice at a Time

Information retrieval methods:

first(t) returns the first position at which the term t occurs in the collection.
last(t) returns the last position at which the term t occurs in the collection.
next(t, current) returns the position of the first occurence of t after the current
position in the collection.

prev(t, current) returns the position of the first occurence of t before the current
position in the collection.

ltems in IndexShards are retrieved one slice at a time
A slice is an array of postings and positional information

Any location is going to be stored as byte offsets

We need methods to get move through slices in reverse, and also
inside the slice backwards too

Dealing with Offsets

- Retrieve start and end offset of posting list and begin at the end
- getPostingsSlice() - given a current offset value, get the offset of

previous slice with this term
- Postings are always 4 bytes long so we know how many postings exist in current
slice

- getPostingAtOffset() - given an offset, returns a substring from

word_docs where there is a posting
- Loop through postings until we reach the start of the posting list
- When our offset goes below the start offset, we know we have seen all postings for
this slice

Dealing with offsets(cont.)

- nextPostingOffsetDocOffset() - takes both a current offset and doc

offset. Retrieves first posting offset in a slice where the document is

also equal or lesser

- If equal, then next offset in same document, else we want last offset for next
document

- Uses exponential search to speed up process

- Two step search that reduces search range before doing binary search inside that
range

- Since working with offsets is finicky, don’t let shard access direction
be changed

Putting it together

- Instead of having methods in the archive bundle that read shards, we

use iterator classes
- Muiltiple iterator classes could be used, and we can combine results of multiple
iterators

- lterator looks to IndexDictionary to find shard generations that contain
that term
- advance() - read in block of shard to memory using start and last

offset
- Only in chunks of up to 800 bytes

- Slight tweaks to news feed update job to create IndexArchiveBundle

Testing

- Performance testing done by setting up fake local RSS feeds

- Feed is populated with miscellaneous data and amount of items is
user specified

- Yioop will only pull from these feeds

- Check for speed and scalability

- Finally check to see if each item is retrieved properly after being
added

Performance for old Yioop

- 0OlId system is slow when 800
trying to add many items 0
- Llkely due to database -
step ” R
- IndexShard only seems to : :o

hold approximately 37,500
items

- 0Old system does not work
when adding more than
this cap

5000 10000 15000 20000 25000 30000 35000 40000
of feed items

Performance of new system

- Speed is increased greatly -
over old Yioop i
- Not limited in size anymore .
- Speed bumps observed ;1
whenever new IndexShard ;’ 600

Is introduced e
Adding a lot of items still ”
slow, but unlikely scenario

200

0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

of feed items

Pulling from multiple sources

since most feeds limit to
50-100 items

g

g

- Previous testing only use a0
1600
one source

1400
- Multiple sources alleviate 2 1200
the long insertion time g o
. = 800

- Closer to real life usage, E oo I

=
-I - _N I

(=]

1 source 2 sources 4 spurces

of feed items
m 25000 m50000 m 10000

Conclusion

- New storage solution for news feed allows for better scalability and
performance

- Adding the same amount of items is faster, and it overcomes the
limitation of holding only one IndexShard worth of data

- Ability to record all seen items instead of removing the oldest ones

- System is already live on Yioop and shown to handle shards correctly

Future work

- Adding to index still gets slow, just not as fast

- Size and format of IndexShards could be optimized further

- Could explore other ways of handling data other than serialized
strings

- News feed system currently uses a basic weighting system based on
time. Could be changed to be more user specific

- Using trending words, cluster feed items based on topic

