
Improved User News Feed
Customization for an Open

Source Search Engine
Timothy Chow

Agenda

- Introduction
- Background of Yioop
- Yioop Indexing
- Index Storage
- Reverse Iteration
- Testing
- Conclusion

Introduction
- In the past, one of the big problems was distribution of stories

- Newspapers were local, region locked
- Now the Internet allows for stories online
- This allows for two benefits

- Distribution is no longer dependent on area or supplier
- Cost to user is generally free

- 61% of Americans get their news online from the Internet on a typical
day.

- New problem rises:
- Now that users can freely choose stories from anywhere online, how to pick which

ones

Content Aggregation

- Content is posted on several different pages
- Instead of human visiting all sites, have machine or system

- System will have to crawl and save all the items
- Collected results are presented at the end to the user

- Results still need to be ranked or sorted in some meaningful way
- One of earliest examples is Yahoo! News in 1996
- Web syndication

Aggregation Methods

- Typically, website content stored in HTML format
- Data stored using tags and attributes

- Good for layout and design, not so much for sharing
- Web feed formats created to solve this

- XML, YAML, JSON, RSS
- Aggregation based on pull strategy

- Feed document contains text and metadata
- List of feeds provided to aggregator
- Aggregator pulls from each feed and stores it

News Ranking

- After items are stored, they need to presented to user in the
best way

- Search engines use a scoring system based on relevancy on
query terms

- Calculated using frequency of search terms matching inside a document
- News feeds ranking prioritizes age of document, or freshness

- Other major factors could include clustered weight and source authority
- More intricate systems will determine temporal freshness

- More obscure features such as story coverage or query frequency within a
given time slot

Existing News Aggregators

- Google News
- Stories are ranked in order of perceived interest
- Similar stories based on subject are clustered
- Specified to each user

- Facebook News
- Stories focused on groups or friends on Facebook
- Four steps: inventory, signals, predictions, and scoring
- Also user specific

- RSS feed aggregators
- Mixes different feeds provided by user, but nothing more
- Similar to Yioop

Trending Words

- Feature in Yioop used to keep track of the top “trending words”
- Word and their occurrences are saved during a news feed update
- Word count is used to calculate some statistics
- Could be used for clustering or search engine optimization(SEO)

Trending Words

Yioop

- Open source search engine written in PHP
- Designed for crawling the web, archiving, and letting users search
- Index is created using visited sites
- Can be manually set up on personal PC
- Unlike Google, crawl sites can be specified by user, as well as the

depth of crawls

Yioop Indexing

- Distributed setup consisting of name servers and queue servers
- Name servers act as nodes, help coordinate crawls
- Each node can have several queue server processes, either to

schedule jobs or to index
- Additional fetcher processes that help with downloading and

processing pages from crawl
- News feed update job is separate from regular crawling, but similar

methodology
-

Crawling

- Initially set up the list of sites to crawl
- Fetcher processes create a schedule that holds data to be processed

later, as well as type of processing required
- Queue server is periodically pinged for list of pages to download

before creating a summary
- The summary is a shortened description of the page along with

different metadata for indexing
- Unique hash id is assigned to each page and index construction

started

Indexing

- In books: an alphabetical list of names, subjects, etc., with references
to the places where they occur

- In databases: a copy of a subset of columns which are used to speed
up access times

- Overall, two major benefits
- Index will be smaller in file size than document
- Lookup on index is faster

- In Yioop, scores for page ranking are also calculated during indexing
before POSTing to queue server

- Queue server merges everything into a final inverted index structure

Inverted Index
- Consider a collection of documents
- What if I want to return every document that contains a certain term
- Create an index from document->term, known as forward index

- e.g. doc1 contains term1, term2, term3, term4
doc2 contains term3, term6
doc3 contains term1, term9, term10

- Using forward index, create a new index which goes from
term->document

- This is the inverted index
- e.g. term1 is in doc1, doc3

term2 is in doc1
term3 is in doc1, doc2

Newsfeed Indexing

- MediaUpdater process handles media jobs
- Mail server, recommendations, trending, feed update

- News feeds are done by FeedsUpdateJob
- MediaUpdater only runs once per hour, whereas standard crawling is

nonstop
- Usual queue server is also designed to crawl with depth in mind, but

media jobs only work with a source, e.g. depth of 1

Newsfeed setup

- Media sources can be one of four
types

- RSS, JSON, HTML Regex, or
podcast

- Each feed needs correct
parameters to function properly

- Assumes sources will be updated
with new items over time

Current Bottleneck

- Prior to this project, crawled news items are stored in intermediary
database

- Items are then added to a singular IndexShard
- Entire IndexShard needs to be rebuilt for each update
- Database storage performance is influenced by amount of RAM that

system has
- Items that are too old have to be removed
- We will explore how index storage works in Yioop and how to change

this current implementation

IndexShards

- Lowest level data structure for a index
- Two access modes, read-only and loaded-in-memory
- While in memory, data can also be packed or unpacked

- New data can only be added while unpacked
- Only packed data can be serialized to disk

- Each shard has three major components
- doc_infos
- word_docs
- words

IndexShard components

- doc_infos - document ids, summary offset, and the total number of
words that were found in that document

- Each record starts with 4 byte offset, followed by 3 bytes to hold doc length, 1 byte
to hold number_doc key strings, and the key strings themselves

- Each key string is 8 bytes containing hash of URL plus a hashed summary
- word_docs - string of sequence of postings

- One posting is a positional offset into a document for where it appears
- Also contains occurrences of word for that document
- Only set while IndexShard is loaded and packed

IndexShard components (cont.)

- words - array of word entries stored in shard
- Exists in two different forms depending on packed or unpacked state
- In packed state, each word entry is made up of:

- Term id
- Generation number
- Offset into word_docs where posting list is stored
- Length of posting list

- In unpacked state, each entry is only a string representation of term plus its
postings

- When serialized to disk, a shard produces a header with doc statistics
and index into words component

Adding to a shard

- Indexing mostly uses the addDocumentWords() method
- Run after processing a singular page
- Takes in the document keys and word lists as arguments
- Keys can include hashed id and host url of a link
- Word lists is associative array of terms to positions with a document

- Terms are hashed and positions are converted to a concatenated
string before being added to words component

- Additional parameters such as meta words, description scores, and
user rank is added

IndexArchiveBundle

- IndexShards technically have no size limit, but reading a shard into
memory is difficult if too big

- Size of IndexShard is determined by how much memory the system
has

- To get around this, have multiple generations of IndexShard
- When one shard is full, save to disk and start new generation
- IndexArchiveBundle is a the data structure that holds this together

IndexArchiveBundle structure

Index storage process

- After crawling some pages, we have generated an IndexShard
- First, check if the most recent shard in bundle has enough space to

store the new shard
- If there is, then merge shards
- If not, then save active shard and start new generation

- At this point, summaries have already been stored in web archive, so
summary offsets are added into the IndexShard

- Once everything has been added, IndexShard is successfully added
to bundle

- Current news feed storage does not use IndexArchiveBundle

Reverse Iteration

- Because news items added at the end of a shard, we want to be able
to move backwards through shards and bundle

- Could have also done backwards construction where items are added
at front of shard

- We need a few new things to make this work:
- New methods to facilitate reverse traversal
- Some way to designate a bundle’s direction
- Modification of existing news feed update job to support IndexArchiveBundles

One Slice at a Time
- Information retrieval methods:

- first(t) returns the first position at which the term t occurs in the collection.
- last(t) returns the last position at which the term t occurs in the collection.
- next(t, current) returns the position of the first occurence of t after the current

position in the collection.
- prev(t, current) returns the position of the first occurence of t before the current

position in the collection.
- Items in IndexShards are retrieved one slice at a time
- A slice is an array of postings and positional information

- Any location is going to be stored as byte offsets
- We need methods to get move through slices in reverse, and also

inside the slice backwards too

Dealing with Offsets

- Retrieve start and end offset of posting list and begin at the end
- getPostingsSlice() - given a current offset value, get the offset of

previous slice with this term
- Postings are always 4 bytes long so we know how many postings exist in current

slice
- getPostingAtOffset() - given an offset, returns a substring from

word_docs where there is a posting
- Loop through postings until we reach the start of the posting list
- When our offset goes below the start offset, we know we have seen all postings for

this slice

Dealing with offsets(cont.)

- nextPostingOffsetDocOffset() - takes both a current offset and doc
offset. Retrieves first posting offset in a slice where the document is
also equal or lesser

- If equal, then next offset in same document, else we want last offset for next
document

- Uses exponential search to speed up process
- Two step search that reduces search range before doing binary search inside that

range
- Since working with offsets is finicky, don’t let shard access direction

be changed

Putting it together

- Instead of having methods in the archive bundle that read shards, we
use iterator classes

- Multiple iterator classes could be used, and we can combine results of multiple
iterators

- Iterator looks to IndexDictionary to find shard generations that contain
that term

- advance() - read in block of shard to memory using start and last
offset

- Only in chunks of up to 800 bytes
- Slight tweaks to news feed update job to create IndexArchiveBundle

Testing

- Performance testing done by setting up fake local RSS feeds
- Feed is populated with miscellaneous data and amount of items is

user specified
- Yioop will only pull from these feeds
- Check for speed and scalability
- Finally check to see if each item is retrieved properly after being

added

Performance for old Yioop

- Old system is slow when
trying to add many items

- LIkely due to database
step

- IndexShard only seems to
hold approximately 37,500
items

- Old system does not work
when adding more than
this cap

Performance of new system

- Speed is increased greatly
over old Yioop

- Not limited in size anymore
- Speed bumps observed

whenever new IndexShard
is introduced

- Adding a lot of items still
slow, but unlikely scenario

Pulling from multiple sources

- Previous testing only use
one source

- Multiple sources alleviate
the long insertion time

- Closer to real life usage,
since most feeds limit to
50-100 items

Conclusion

- New storage solution for news feed allows for better scalability and
performance

- Adding the same amount of items is faster, and it overcomes the
limitation of holding only one IndexShard worth of data

- Ability to record all seen items instead of removing the oldest ones
- System is already live on Yioop and shown to handle shards correctly

Future work

- Adding to index still gets slow, just not as fast
- Size and format of IndexShards could be optimized further
- Could explore other ways of handling data other than serialized

strings
- News feed system currently uses a basic weighting system based on

time. Could be changed to be more user specific
- Using trending words, cluster feed items based on topic

